
Journal of Computational Physics164,1–21 (2000)

doi:10.1006/jcph.2000.6587, available online at http://www.idealibrary.com on

A Pseudo-spectral Scheme for the
Incompressible Navier–Stokes
Equations Using Unstructured

Nodal Elements

T. Warburton,∗ L. F. Pavarino,† and J. S. Hesthaven∗
∗Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912; and
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A pseudo-spectral scheme for solving the incompressible Navier–Stokes equations
using unstructured nodal triangles is proposed. Efficient algorithms are developed
with numerical evidence that indicates optimal rates of convergence can be achieved.
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1. INTRODUCTION

There have been a number of recent developments of high-order schemes on unstruc-
tured elements (triangles in two dimensions and tetrahedra, prisms, and pyramids in three
dimensions). The modal approach employs a local approximation, on the element, that
uses a warped tensor product basis based on Jacobi polynomials of variable weight. These
have been derived independently in [9, 23, 26], and it is known that these polynomials
are the solutions to a singular Sturm–Liouville problem [19, 23, 33, 34] analogous to the
one-dimensional problem from which the classical orthogonal polynomials can be derived.
Methods based on such modal elements have been shown to be computationally efficient
and robust for simulating the Navier–Stokes equations in complex domains [27, 18, 34].

The approach we investigate in this paper likewise uses a compact, element-based rep-
resentation of the solutions. In each element, however, we choose a set of nodes, construct
Lagrange interpolating polynomials associated with these nodes, and use these polynomials
to express the approximate solution. The optimal choice of the nodes on which to base the
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interpolation is almost an open question for the triangle, as there is no obvious generalization
analogous to the quadrilateral where a tensor product of one-dimensional Legendre poly-
nomials is used. A sensible constraint is that the nodes coincide with the one-dimensional
Legendre nodes along the boundary of the triangle. This allows the efficient interfacing
of triangles and quadrilaterals together in the same mesh, making possible the use of thin
quadrilaterals to capture short length scales in boundary layers.

We will consider two sets of nodes. First, we consider a set based on the Fekete principle;
i.e., the nodes are chosen to maximize the determinant of the generalized Vandermonde
matrix, which we shall define later. The Fekete nodes have been calculated to high order
for the triangle [33], and they indicate good approximation properties measured by their
Lebesgue constant. Additionally, we will examine the nodes calculated by Hesthaven [15]
using an electrostatic principle motivated by a one-dimensional analogy generated between
Gauss quadrature points and solutions to electrostatic problems [32].

There are alternative nodal sets for the triangle including a set based on a collapsed
coordinate system and a filter [12], but these have a Chebyshev distribution on the boundary.
Alternative nodal sets for the triangle and tetrahedron have been obtained by seeking an
approximate minimum for the Lebesgue constant [6, 7]. These solutions, however, do not
have a known simple distribution along the edges.

In Section 2 we will demonstrate how nodal sets can be integrated into a Galerkin
framework and how they can be used to calculate high-order integrals and derivatives of
functions. Section 3 is devoted to a brief discussion of how to discretize an elliptic problem
and solve it using these nodes, while Section 4 investigates the accuracy of the projections
based on these nodes. In Section 5 we discuss a possible preconditioner for the discrete
elliptic operator which may be suitable for use in a moving domain code where the operator
is time dependent. Section 6 demonstrates how this method can be integrated into a general
scheme to solve the incompressible Navier–Stokes equations. Section 7 concludes with a
few remarks.

In many instances we will use the terminology ofh-refinement to imply that we are
modifying the number and size of elements, whilep-refinement refers to a change in the
polynomial order used to represent the fields within each element.

2. ELEMENTAL OPERATIONS

2.1. Coordinate Systems

In the following sections, we will discuss the operators necessary to build a hybrid spectral
element code. To form these operators we define a master element for the triangle and one
for the quadrilateral. The triangle is defined as the set

T = {(r, s) | −1≤ r, s ≤ 1; r + s ≤ 0},

and the quadrilateral as

Q = {(r, s) | −1≤ r, s ≤ 1}.
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We map a point in the master triangle,T , to a pointx in the physical straight-sided triangle
with the mapping

x = − (r + s)

2
v1+ (1+ r )

2
v2+ (1+ s)

2
v3,

wherev1, v2, v3 are the spatial coordinates of the vertices of the physical triangle.
Similarly the master quadrilateral,Q, is mapped to a straight-sided physical quadrilateral

with the following mapping:

x = (1− r )

2

(1− s)

2
v1+ (1+ r )

2

(1− s)

2
v2+ (1+ r )

2

(1+ s)

2
v3+ (1− r )

2

(1+ s)

2
v4.

We return to the general case of curvilinear elements in Section 4.1.

2.2. Collocation Projection

To calculate the discrete expansion coefficients for an expansion using the orthogonal
Koornwinder/Dubiner polynomials [9, 19] we use the interpolating property of the Lagrange
polynomial; i.e., it is unity at a specific node and zero at all other nodes. We can expand
any polynomialf ∈ Pp = {r i sj | 0≤ i + j ≤ p} as a linear combination,

f (r, s) =
∑

0≤ j+k≤p

ψ jk(r, s) f̂ jk,

of the Koornwinder/Dubiner polynomials defined as

ψi j (r, s) =
√
(2i + 1)(i + j + 1)

2
P0,0

i

(
−2(r + s)

1− s

)(
1− s

2

)i

P2i+1,0
j (s),

wherePα,β
n (x) represents thenth-order Jacobi polynomial. Subsequently we shall use the

notationφk = ψi j for any member of this basis, wherek represents a unique pair(i, j ).
Let us now define the Vandermonde matrix as

Vi j = φ j (ri , si ),

where(ri , si ) is the local coordinate of thei th node in the master element. If this matrix is
sufficiently well conditioned, we can find a unique polynomial representation for a function
whose values are known at the nodal positions, as

f̂ i =
∑

0≤ j<N p

V−1
i j f (r j , sj )

Np = (p+ 1)(p+ 2)/2,

where the coefficientŝf i are represented in the same order as the basis functions. The
conditioning of the Vandermonde matrix,V, is determined by the choice of the basis it is
formed with and the set of nodes at which this basis is evaluated. The orthonormal basis
is a natural choice over the simpler monomial basis as it is designed to maintain linear
independence. This slightly increases the complexity of constructingV but dramatically
improves the conditioning.
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Recently there have been a number of efforts directed towards finding numerically stable
sets of collocation points for the triangle [1, 2, 6, 15, 33]. We will focus on two sets of nodes.
The first is the set of Fekete collocation points calculated by Taylor and Wingate [33]. These
nodes are defined as the set of nodes which maximise the determinant of the Vandermonde
matrix. The second set was derived by Hesthaven [15] using an analogy between the zeros
of Jacobi polynomials and the solution of an electrostatics problem. In Figs. 5 and 6, we
show a Delaunay triangulation [30] of these nodes on the master triangle for polynomial
orders up top = 12.

2.3. Differentiation

Given a set of values of a function at the nodal positions, we can evaluate the derivatives
by exploiting the interpolating polynomial. Hence thex derivative of a functionf is ob-
tained by first calculating its polynomial coefficients and then differentiating the polynomial
approximation and evaluating at the nodes as

∂ f

∂x
(ri , si ) =

∑
0≤ j<Np

(
rx(ri , si )D

r
i j + sx(ri , si )D

s
i j

)
f (r j , sj )

Dr
i j =

∂L j

∂r
(ri , si )

Ds
i j =

∂L j

∂s
(ri , si ),

whereL j is the Lagrange interpolating function which is unity at thej th node and zero at
all other nodes.Dr

i j is the evaluation of the derivative with respect tor of the j th Lagrange
interpolating function at thei th node, andrx, sx are the derivatives of the master element
coordinates with respect to the physical coordinatex. This is exact for allf ∈ Pp by the
uniqueness of the interpolation.

In practice we precalculate the matricesDr andDs using the identity

Dr
i j =

∑
0≤k<Np

∂φk

∂r
(ri , si )V

−1
k j

Ds
i j =

∑
0≤k<Np

∂φk

∂s
(ri , si )V

−1
k j .

These matrices can be used for all straight-sided triangles of the same polynomial order.
Using these, it is straightforward to calculate thex andy derivatives of the function. The
derivatives of theφ basis functions can be calculated using the identity

d

dx
Pα,0

n (x) = 1

2
(α + n+ 1)Pα+1,1

n−1 (x). (1)

2.4. Inner Products

It will be necessary to evaluate inner products of the form

(u, v) =
∫ 1

−1

∫ −s

−1
f (r, s)g(r, s)J(r, s) dr ds,
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where f, g ∈ Pp and J(r, s) is the transformation Jacobian associated with the mapping
between(r, s) and(x, y).

For the moment we will consider the case where the Jacobian (J) is independent ofr
ands. This will be true for all straight-sided triangles. For quadrilateral elements, integrals
of this type are usually calculated using a quadrature rule based on a tensor product of
Gauss–Lobatto–Legendre quadrature points and weights. Using apth-order quadrature
exactly integrates the productf · g ∈ P2p−1. However, there is no obvious analogous set
of weights for the Fekete or electrostatic nodes that will achieve the same level of accuracy.
Taylor and Wingate [33] proposed a set of weights that will integrate functions up to total
polynomial orderp. This is useful in certain circumstances but is not sufficiently accurate
to evaluate the above integral.

We propose to replace the usual set of weights with a semi-analytical approach to calcu-
late the inner products in which we use the collocation projection described previously to
project both the functionsf andg to the orthogonal Koornwinder/Dubiner polynomials.
The orthogonality of the basis functions allows us to simply take the dot product of the two
coefficient vectors to calculate the inner product of the two polynomials

( f, g) = J
Np−1∑
i=0

Np−1∑
j=0

Np−1∑
k=0

fi
(
V−1

j i V−1
jk

)
gk,

whereV is the Vandermonde matrix evaluated with respect to the orthonormal Koorn-
winder/Dubiner basis. The inner product is exact for allf, g ∈ Pp if the triangle is straight-
sided. In practice, the matrix(V−1)T (V−1) is calculated in preprocessing.

3. CONTINUOUS AND DISCRETE ELLIPTIC PROBLEMS

We consider the following model elliptic problem on a bounded Lipschitz regionÄ ⊂ Rd

with boundary∂Ä = 0D ∪ 0N :
(−∇2+ λ)u = f (λ > 0) in Ä,
u = u0 on0D,
∂u
∂n = g on0N .

Dirichlet boundary conditions are imposed on0D, a closed subset of∂Ä with positive
measure, and Neumann conditions on0N . More general linear, self-adjoint, second-order
elliptic problems and boundary conditions could be considered as well. The standard vari-
ational formulation of this problem is:

Findu ∈ V = H1
D(Ä) = {v ∈ H1(Ä): v = 0 on0D} such that

a(u, v) = F(v), ∀ v ∈ V, (2)

where

a(u, v) =
∫
Ä

(∇u · ∇v + λuv) dx and F(v) =
∫
Ä

f v dx+
∫
0N

gv ds.

We assume the domainÄ is a union of the spectral elements described previously

Ä =
K⋃

k=1

Äk,
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where eachÄk is the affine image of the reference triangle or square. LetτK be the
mesh defined by the spectral elementsÄk, and the spectral element space being defined
as

V p,K = {v ∈ V : v|Äk ∈ Pp, k = 1, . . . , K
}
.

For quadrilaterals

Pp = {xi y j | 0≤ i, j ≤ p},

and for triangles

Pp = {xi y j | 0≤ i + j ≤ p}.

The standard Galerkin formulation of (2) is:
Findu ∈ V p,K such that

ap,K (u, v) = Fp,K (v) ∀ v ∈ V p,K , (3)

whereap,K (·, ·) and Fp,K (·) are obtained froma(·, ·) and F(·) by using the integration
previously described in Section 2.4.

The stiffness matrixA and load vectorf of this discrete system are assembled from
their elemental contributions on eachÄk by means of theZ operator, described in detail
in [13], which assembles the local coefficients into the global coefficients and ensuresC0

continuity.
There are numerous approaches to solving the resulting discrete systemAx = f . Besides

direct methods, which can be very expensive and far from optimal for large-scale problems,
common approaches are based on the iterative solution of this system by a preconditioned
Krylov subspace method such as PCG. The preconditioners range from simple diagonal
scaling or incomplete factorizations ofA to more efficient domain decomposition methods,
based on overlapping or iterative substructuring techniques. This latter class of algorithms
is based on condensing out the nodes on the boundary of the element, solving a Schur
complement system for the boundary nodes, and then solving local problems for the interior
degrees of freedom [28]. In other words, by ordering the boundary nodesxB and then the
interior nodesxI , x = (xB, xI ), the systemAx = f is rewritten as

[
AB − AT

BI A−1
I ABI 0

ABI AI

] [
xB

xI

]
=
[

fB − AT
BI A−1

I f I

f I

]
.

The Schur complement system

SxB =
(

AB − AT
BI A−1

I ABI
)
xB = f̃ B = fB − AT

BI A−1
I f I (4)

is solved iteratively by a preconditioned conjugate gradient method. Again, the precondi-
tioners range from diagonal scaling to domain decomposition methods; see [25, 28].
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4. ACCURACY OF PROJECTION OPERATOR

We tested the accuracy of the nodal triangles for solving the elliptic problem by perform-
ing a p- andh-refinement study. The continuous problem is

(−∇2+ 1)u = (1+ 2π2) sin(πx) sin(πy) in Ä = [−1, 1]× [−1, 1],
u = sin(πx) sin(πy) on0D = ∂Ä. (5)

The domain is covered withK = 2M2 triangles, and the rate of convergence, for fixedp,
is calculated as

rate= log(errorM+1/errorM)

log(M/(M + 1))
.

Table I shows the results using the Fekete points and Table II shows the results of the same
study using the electrostatic points. Both sets of points achieve exponential convergence
to the exact solution, with approximately(p+ 1)th-order accuracy. Figure 1 shows log–
log plots, demonstrating the expected similarity between the errors from both methods. The
slight differences for the errors near machine precision are caused by finite precision effects.
The L∞ norm was calculated using the values of the fields at the nodes; i.e. the locations
of the sampling for this norm depend on the choice of basis.

4.1. Accuracy of Projection on Curved Elements

To represent a curved boundary, it is convenient to use an isoparametric mapping of
the coordinate system. In this work we use standard Hall blending techniques to curve the
triangular elements [11].

In preprocessing we use a product-rule quadrature, on a collapsed coordinate system
for the triangle [18], to calculate the mass matrices and stiffness matrices specific to each
curved element. This allows specification of the order of accuracy of the spatial integration
without being bound by thepth-order projection that causes aliasing for the product of
the integrands, the geometric factors, and the Jacobian. For the solution of Eq. 5, on the
domains shown in Fig. 2, with this approach we achieve, as seen in Fig. 3, exponential
convergence at a suboptimal rate of just overp.

TABLE I

Rate ofp Convergence for the Elliptic Problem Using Fekete Nodes

p M = 3 M = 4 M = 5 M = 6 M = 7 M = 8 M = 9 M = 10 M = 11

2 2.47 3.10 3.72 4.04 3.50 3.77 3.99 3.97 3.78
3 4.28 4.25 3.91 3.58 2.93 4.11 3.30 3.85 3.47
4 4.46 5.08 5.24 4.43 4.87 4.95 5.20 4.70 4.93
5 5.62 5.78 5.86 5.90 5.93 5.95 5.96 5.97 5.97
6 6.43 7.04 7.35 6.24 6.80 7.04 7.26 6.60 6.89
7 7.79 7.88 7.92 7.94 7.95 7.96 7.97 7.98 7.98
8 8.38 9.08 9.39 8.21 8.78 9.07 9.28 8.57 8.89
9 9.82 9.90 9.93 9.95 9.96 9.98 9.98 9.68 10.19

10 10.36 11.12 11.43 10.16 10.25 10.39 9.32 ∗∗ ∗∗

11 11.84 11.91 12.01 11.67 9.75 ∗∗ ∗∗ ∗∗ ∗∗

12 12.46 12.96 11.26 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

∗∗ Indicates that the solution has already converged to the iterative tolerance at lower resolution.
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TABLE II

Rate ofp Convergence for the Elliptic Problem Using the Electrostatic Nodes

p M = 3 M = 4 M = 5 M = 6 M = 7 M = 8 M = 9 M = 10 M = 11

2 2.47 3.10 3.72 4.04 3.50 3.77 3.99 3.97 3.78
3 4.28 4.25 3.91 3.58 2.93 4.11 3.30 3.85 3.47
4 4.36 4.92 5.24 4.39 4.81 4.97 5.21 4.68 4.89
5 5.68 5.71 5.83 5.86 5.91 5.92 5.95 5.95 5.97
6 6.44 7.06 7.38 6.26 6.82 7.07 7.25 6.61 6.90
7 7.79 7.87 7.91 7.94 7.95 7.96 7.97 7.97 7.98
8 8.42 9.09 9.41 8.23 8.79 9.08 9.29 8.58 8.88
9 9.84 9.90 9.93 9.95 9.97 9.97 9.98 9.93 8.99

10 10.42 11.11 11.43 10.21 10.68 ∗∗ ∗∗ ∗∗ ∗∗

11 11.87 11.94 11.09 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

12 12.37 12.04 ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗ ∗∗

∗∗ Indicates that the solution has already converged to the iterative tolerance at lower resolution.

p=1

p=2

p=3

p=4

p=5

p=7

p=8 p=9

p=10

p=11

p=6

p=1

p=2

p=3

p=4

p=5

p=7

p=8 p=9

p=10

p=11

p=6

(a) (b)

FIG. 1. An h andp convergence study for solution of the elliptic problem. (a) Fekete nodes. (b) Electrostatic
nodes.

K=16 K=64

K=256 K=1024

FIG. 2. Curved triangles used forh- and p-refinement tests.
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FIG. 3. Convergence ofL2 error for the standard elliptic problem on a curved domain using mass matrices
calculated with quadrature. (a) Using Fekete nodes; (b) using electrostatic nodes.

5. h-TYPE PRECONDITIONERS

The benefit of efficient, finite-element-based preconditioning for quadrilateral and hex-
ahedral spectral elements [4, 8, 22, 24] is part of the motivation for using nodal triangles.
The original method involves constructing a finite-element operator based on triangulating
the GLL nodes of the spectral elements. The resulting operator is spectrally equivalent to
the true spectral element operator and the preconditioner is hence quasi-optimal. The finite-
element-based preconditioner is more readily approximately inverted using multigrid [31],
ILU [21], or overlapping additive Schwarz [10] methods.

In this section we will experimentally determine whether similar results on the spectral
equivalence hold for the nodal triangle, and we will show that the results do not hold for
the Fekete or electrostatic choice of nodes. We have found that the condition number for
the discrete elliptic operatorap,K , preconditioned with theh-type preconditioner, scales
linearly with the order of nodes used. This indicates that this preconditioner is no longer
spectrally equivalent to the elliptic operator and thus will not be as efficient as for the
quadrilateral case.

5.1. Fekete-Based h-Type Preconditioner

To understand the spectral behaviour of a finite-element-based preconditioner we consider
the solution of the Helmholtz equation in a square of length 2, covered in a regular array of
M ×M squares each split into two triangular elements. A Delaunay triangulation [30] of
the nodes is used to form a finite-element mesh as shown in Fig. 4. We see that forp = 4
to p = 7 this mesh is quite regular, while for a largerp we find that the underlying grid
can be very irregular. The irregularity can be seen in the widely varying aspect ratios of the
triangulation.

The results in Table III show the dependence of the condition number of the precondi-
tioned operator on the polynomial order and grid resolution. It is clear that the preconditioner
removes any dependence on the size of elements, but there remains a linear dependence on
the polynomial order.
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(p=5) (p=6)

(p=7) (p=9)(p=8)

(p=10) (p=11) (p=12)

(p=4)

FIG. 4. Fekete-node-based finite-element mesh.

There is a jump in the condition number for thep = 8 cases. We believe this can be
traced to an irregularity in the Delaunay triangulation. In Table IV we see that the minimum
angle of the mesh is rather small for this case.

In Fig. 5 we show the eigenvalues for the preconditioned operator for a similar problem
in which the reference triangle acts as the total domain. The eigenvalues are real, and we
see that most of the eigenvalues cluster around the interval 1 to 5. However, a few isolated
eigenvalues have much larger values. These are the modes that are directly responsible
for the increase of the condition number of the preconditioned operator with polynomial
order.

TABLE III

The h- and p-Dependence of Condition Number of Fekete Typeh-Preconditioned

Elliptic Operator ( h = 2/M)

p M = 3 M = 4 M = 5 M = 6 M = 7 M = 8 M = 9 M = 10 M = 11 M = 12

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.79 1.87 1.71 1.93 1.83 1.96 1.89 1.92 1.90 1.90
3 2.61 2.64 2.62 2.61 2.60 2.59 2.59 2.58 2.58 2.58
4 3.39 3.41 3.38 3.36 3.35 3.34 3.34 3.33 3.32 3.32
5 4.45 4.49 4.50 4.52 4.52 4.53 4.53 4.53 4.53 4.53
6 5.88 5.93 5.94 5.92 5.90 5.88 5.88 5.88 5.88 5.88
7 8.13 8.16 8.19 8.20 8.21 8.22 8.22 8.23 8.23 8.23
8 23.84 24.12 24.17 24.21 24.22 24.19 24.20 24.15 24.18 24.16
9 19.07 19.09 19.09 19.06 19.04 19.02 18.99 18.96 18.84 18.79

10 17.25 17.35 17.39 17.41 17.42 17.42 17.43 17.43 17.43 17.43
11 29.12 29.35 29.47 29.54 29.57 29.58 29.60 29.61 29.63 29.64
12 24.77 24.80 24.78 24.80 24.79 24.79 24.79 24.79 24.79 24.79
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TABLE IV

Range of Angles and Edge Lengths of the Fekete- and Electrostatic-Based Finite-Element

Mesh as a Function ofp for M = 3

Min angle Max angle Min length Max length

p Fekete Electro Fekete Electro Fekete Electro Fekete Electro

1 45 45 90 90 0.666 0.666 0.942 0.942
2 45 45 90 90 0.333 0.333 0.471 0.471
3 32.19 32.19 106.60 106.60 0.184 0.184 0.421 0.421
4 30.18 26.11 116.56 107.66 0.115 0.115 0.330 0.308
5 27.97 27.10 122.29 115.78 0.078 0.078 0.268 0.268
6 25.08 26.50 129.82 123.31 0.056 0.056 0.235 0.232
7 22.47 17.44 133.79 132.13 0.042 0.042 0.200 0.209
8 8.21 14.47 147.93 135.75 0.029 0.029 0.228 0.183
9 18.70 12.96 141.31 137.61 0.026 0.020 0.161 0.164

10 7.13 11.04 151.75 139.85 0.017 0.014 0.185 0.146
11 6.02 9.70 158.75 141.45 0.018 0.010 0.197 0.133
12 6.26 6.32 157.98 143.76 0.012 0.007 0.166 0.121

5.2. Electrostatic Based h-Type Preconditioner

We have repeated the computation of condition number for the elliptic operator precon-
ditioned by theh-type preconditioner based on the electrostatic nodes. The finite-element
mesh derived from the nodes is shown in Fig. 6 and theh- and p-dependence of the

FIG. 5. Real eigenvalues of the elliptic operator on a one element triangular domain, preconditioned with the
Fekete-based finite-element preconditioner.
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(p=5) (p=6)

(p=7) (p=9)(p=8)

(p=10) (p=11) (p=12)

(p=4)

FIG. 6. Electrostatic-node-based finite-element mesh for a reference element.

condition number of the preconditioned operator is shown in Table V. For this choice of
nodes we find that the condition number grows linearly up top = 6. For larger polynomial
order the condition number is found to grow faster. In Table IV we see that the mini-
mum edge length in the electrostatic meshes decreases rather more rapidly than for the
Fekete mesh. We conjecture that this directly affects the scaling of the finite-element-based
operator.

In Fig. 7 we show the eigenvalues for the preconditioned operator for a problem in which
the reference triangle acts as the total domain. As we saw with the Fekete version, the
eigenvalues are real, and most of the eigenvalues cluster around the interval 1 to 5. There

TABLE V

The h- and p-Dependence of Condition Number of Electrostatic-Typeh-Preconditioned

Elliptic Operator ( h = 2/M)

p M = 3 M = 4 M = 5 M = 6 M = 7 M = 8 M = 9 M = 10 M = 11 M = 12

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.79 1.87 1.71 1.93 1.83 1.96 1.89 1.92 1.90 1.90
3 2.61 2.64 2.62 2.61 2.60 2.59 2.59 2.58 2.58 2.58
4 3.78 3.75 3.75 3.76 3.76 3.76 3.76 3.76 3.76 3.76
5 4.61 4.65 4.64 4.65 4.65 4.64 4.64 4.64 4.63 4.63
6 6.67 6.74 6.77 6.78 6.79 6.79 6.78 6.78 6.78 6.78
7 9.56 9.62 9.50 9.68 9.61 9.67 9.66 9.66 9.66 9.66
8 14.94 15.09 15.14 15.18 15.20 15.21 15.22 15.22 15.23 15.23
9 23.95 24.16 24.25 24.29 24.30 24.31 24.28 24.30 24.25 24.27

10 44.75 45.02 45.12 45.18 45.21 45.23 45.24 45.25 45.26 45.26
11 81.51 82.17 82.45 82.59 82.66 82.71 82.74 82.76 82.77 82.77
12 150.93 151.87 152.32 152.58 152.74 152.85 152.93 152.99 153.03 153.06
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FIG. 7. Real eigenvalues of the elliptic operator on a one element triangular domain, preconditioned with the
electrostatic-based finite-element preconditioner.

are a few isolated eigenvalues, however, which have much larger values than the Fekete
case, hence causing the less favorable behaviour seen in Table V.

5.3. Quadrilateral GLL-Based h-Type Preconditioner

The results for theh- and p-refinement test on theh-type preconditioner, shown in
Table VI, for the same problem using aK = M2 mesh of quadrilateral elements, confirm

TABLE VI

The h- and p-Dependence of Condition Number of the GLL-Typeh-Preconditioned

Elliptic Operator on a Mesh of Quadrilaterals

p M = 3 M = 4 M = 5 M = 6 M = 7 M = 8 M = 9 M = 10 M = 11 M = 12

1 1.00 1.03 1.02 1.01 1.01 1.01 1.00 1.00 1.00 1.00
2 2.44 2.53 2.59 2.60 2.62 2.56 2.61 2.64 2.61 2.61
3 2.56 2.53 2.53 2.54 2.54 2.55 2.55 2.55 2.55 2.55
4 2.69 2.69 2.69 2.69 2.68 2.69 2.69 2.69 2.68 2.68
5 2.82 2.82 2.81 2.81 2.81 2.82 2.82 2.82 2.82 2.82
6 2.88 2.92 2.91 2.91 2.91 2.91 2.91 2.91 2.91 2.91
7 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
8 3.07 3.07 3.07 3.07 3.07 3.07 3.07 3.07 3.07 3.07
9 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13

10 3.16 3.18 3.18 3.17 3.17 3.17 3.17 3.17 3.17 3.17
11 3.17 3.22 3.22 3.22 3.22 3.22 3.22 3.22 3.22 3.22
12 3.24 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
13 2.18 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29
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(p=5) (p=6)

(p=7) (p=9)(p=8)

(p=10) (p=11) (p=12)

(p=4)

FIG. 8. Quadrilateral GLL-node-based finite-element mesh for a reference element.

that the condition number does not grow and experimentally validate the theory in [5], which
states that the condition number is bounded independent ofh- and p-refinement. In Fig. 8
we show the Delaunay triangulation created using the Gauss–Lobatto–Legendre nodes.

6. INCOMPRESSIBLE NAVIER–STOKES SIMULATIONS

The two-dimensional incompressible Navier–Stokes equations are

∂v
∂t
+ (v · ∇)v = −∇P + ν∇2v+ F,

∇ · v = 0,

wherev denotes the velocity of the fluid with componentsv = [u(x, y, t), v(x, y, t)]T in
thex andy directions,P(x, y, t) is the pressure,F(x, y, t) is a forcing function, andν is
the kinematic viscosity. To discretize these equations in time we use a high-order splitting
scheme [17] involving four substeps,

ṽ =
Ji−1∑
q=0

αqvn−q +1t

Je−1∑
q=0

βqN(vn−q)+ Fn+1

 (6)

∂ P̄n+1

∂n
= −n ·

Je−1∑
q=0

βq(N(vn−q)+ ν∇ × (∇ × vn−q))

 (7)

∇2P̄n+1 = ∇ ·
(

ṽ
1t

)
(8)

∇2vn+1− γ0

ν1t
vn+1 = − 1

ν1t
(ṽ−1t∇ P̄n+1), (9)
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wheren is the time step number,1t is the size of the time step,Ji is the order of time
integration for the diffusive term,Je is the order of the advection term, and the coefficients
(αq, βq, γ0) are listed in [18].

The first step is performed using the values of the fields(u, v, P̄) at the nodal points
associated with each element. This will clearly involve some aliasing in the nonlinear term
N(v). However, experience with the existing PRISM [13] andN εκT αr [29] codes indicates
that this is not typically a significant problem.

The second step is to evaluate the value of the pressure Neumann conditions associated
with the Dirichlet velocity conditions. Again this is calculated using the nodal values of
the(u, v) fields. The third step involves solving the linear system of equations described in
Section 3. Here, the right-hand side is first evaluated using the derivative operators described
in Section 2.3. The fourth step is similar to the third step and involves the solution of two
independent equation systems, one for each velocity component.

6.1. Numerical Validations

For the following test cases we used Cholesky factorization on the pressure and velocity
systems to factorize the Schur complement from Eq. (4) at the start of the computation.
Direct solvers were also used for each element to solve the decoupled interior–interior node
systems.

6.1.1. Kovasznay flow.The first Navier–Stokes solution we shall consider is the
Kovasznay flow. This is a laminar flow behind a two-dimensional grid, the exact solution
of which is due to Kovasznay [20]. This solution can be written as a function of Reynolds
number Re in the form

u(x, y) = λ

2π
eλy sin(2πx)

v(x, y) = 1− eλy cos(2πx),

where

λ = Re

2
−
(

Re2

4
+ 4π2

) 1
2

.

Using the exact solution as Dirichlet boundary conditions, a steady-state solution was
obtained using the discretizations shown in Fig. 9. Using the exact solution allows us to
calculate theL2 error for increasing expansion order as shown in Fig. 10. The rates of
convergence for the two nodal sets are given in Tables VII and VIII. It is clear that the rate
of convergence is close top+ 1 up to the time stepping error which is of the order1t3. In
this case1t = 0.001 and the convergence cut off is atO(10−9).

FIG. 9. Meshes used inh- and p-refinement studies of the Kovasznay problem.
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TABLE VII

Rate ofp Convergence, in theL2 Norm, for the Kovasznay

Problem (Re = 40) Using Fekete Nodes

Mesh

p M = 2 M = 3 M = 4 M = 6

2 8.61 3.80 3.04 3.55
3 3.93 3.49 5.73 5.05
4 6.21 5.74 5.62 4.60
5 6.57 4.16 7.48 5.87
6 8.62 7.81 6.81 6.67
7 8.03 6.30 8.81 7.33
8 10.42 8.41 8.74 5.81
9 9.93 7.91 7.56 ∗∗

∗∗ Indicates that the solution has already converged to the time stepping error.

TABLE VIII

Rate ofp Convergence, in theL2 Norm, for the Kovasznay

Problem (Re = 40) Using Electrostatic Nodes

Mesh

p M = 2 M = 3 M = 4 M = 6

2 8.61 3.80 3.04 3.55
3 3.93 3.49 5.73 5.05
4 6.32 5.51 5.76 4.52
5 6.62 4.16 7.50 5.68
6 8.59 7.74 6.84 6.72
7 7.94 6.54 8.78 7.25
8 10.34 8.71 8.81 5.74
9 9.58 8.31 7.51 ∗∗

∗∗ Indicates that the solution has already converged to the time stepping error.

(a) (b)

FIG. 10. Convergence in theL2 norm as a function of polynomial order for the steady-state Kovasznay flow
at a Reynolds number Re= 40. (a) Using Fekete nodes; (b) using electrostatic nodes.
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6.1.2. Double shear layer flow.The next test is similar to cases considered by Brown
and Minion [3]. It consists of an initial value problem in a periodic box of length 2. Two
thin shear layers are perturbed and subsequently roll up into two vortices with trailing arms.
The initial condition is

u = tanh(ε(y+ 0.5)) for y ≤ 0

= tanh(ε(0.5− y)) for y > 0.

v = δ cos(πx)

ε = 40.0

δ = 0.05

We used this highly nonlinear flow to test the potential aliasing properties of the nodal
triangle and compare the results with those using the modal triangle. In Fig. 11 we show
comparisons, at time 1.87, of the vorticity field for the simulation run withp = 9, p =
11, p = 14, andp = 18 on a mesh of 12× 12× 2 triangle elements. The plots on the left
show the nodal results, and the plots on the right show the modal results.

This test is a good indication of the effects of underresolution. In Fig. 11a we see that four
spurious vortices have been created due to lack of resolution. In contrast the modal version
in Fig. 11b has created several weaker spurious vortices, and the roll up of the arms has
been distorted. Both these cases confirm that lack of resolution can cause dubious physical
phenomena. It is interesting to note that the different types of approximation have markedly
different properties in this regime. It is difficult to mark either case as being more accurate.

Comparing Figs. 11c and 11d we see that forp = 11 the latter, modal version, still
exhibits a spurious vortex on the trailing arm of the lower vortex. The nodal version (c)
shows no strong spurious vortices, but still has some residual oscillations on the trailing
arms.

Increasing the resolution more, as shown in Figs. 11e–11h, clearly removes these anoma-
lous vortices and restores the correct symmetries in the solutions. It appears from these
results that aliasing causes no greater problem for the nodal triangle than for the modal
triangle.

6.2. Flow Past a Cylinder

Flow past a cylinder provides a good way to verify an unsteady Navier–Stokes code. For
Re≥ 40 vortex shedding occurs at the cylinder and a von Karman street of vortices forms in
the wake of the cylinder (Fig. 12). This shedding process causes the forces on the cylinder
to oscillate with a distinct frequency, known as the Strouhal frequency (St). The Strouhal
frequency will be used as a measure to compare the results from this and other codes.

For Reynolds numbers up to approximately 190 the flow remains two-dimensional. Above
this number three-dimensional instabilities occur, causing the two-dimensional approxima-
tion to be increasingly inaccurate for higher Re.

For this test of the nodal triangle we consider two-dimensional flow past a circular
cylinder. The cylinder has unit diameter, and the domain surrounding the cylinder is a
rectangle [−22, 69]× [−22, 22]. Uniform velocity boundaries are used at the inflow, upper
and lower boundaries. Zero Neumann boundary conditions are used for velocity and the
pressure is set to zero at the outflow.
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  (a)   (b)

  (c)   (d)

(e) (f)

(g) (h)

FIG. 11. Vorticity contours for the double shear layer flow (Re= 10,000,t = 1.87). Fekete nodes: (a)p = 9,
(c) p = 11, (e)p = 14, (g) p = 18. Modified Dubiner basis: (b)p = 9, (d) p = 11, (f) p = 14, (h) p = 18.
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FIG. 12. Top: Vorticity contours for flow past a cylinder (Re= 100,p = 9, 490 elements). Bottom: Full mesh
with thick lines showing element boundaries and thin lines showing triangulation of nodes.

In Table IX we compare the results for Strouhal frequency and drag coefficient Cd from
the modal element code,N εκT αr [29, 34], and the nodal quadrilateral code Prism [13] for
a Re= 100 simulation. We see that very good agreement is reached between each of the
different approaches for discretizing the domain.

7. SUMMARY

We have demonstrated a straight-forward algorithm for using unstructured nodal spectral
elements. For straight-sided triangles we have shown that it is not necessary to use a set of
Gauss-like weights for volume integrals. The nodal triangles achieve exponential conver-
gence with an optimal rate of(p+ 1)th-order accuracy. For curved triangles we have shown
that it is sufficient to introduce a high-order quadrature or cubature to achieve a suboptimal
rate of pth-order accuracy.

We have shown that there is not much difference between the accuracies using the Fekete
or electrostatic nodes with this algorithm. However, it is more difficult to precondition

TABLE IX

Resolution of Strouhal Frequency (St) and Drag Coefficient (Cd) by Nodal Triangles, Modal

Triangles, Reference High-Resolution Modal Hybrid Grid, and Nodal Quadrilaterals (Prism)

Code Resolution St Cd

Nodal code K = 490, p = 9 0.1662 1.3447
Modal hybridN εκT αr K = 490, p = 9 0.1661 1.3446
Modal hybridN εκT αr K = 780, p = 11 0.1662 1.3447
Prism [14] 14000 dof 0.1664 1.3500
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elliptic solves using a finite-element preconditioner based on the electrostatic nodes than
when using the Fekete nodes.

The algorithm has been demonstrated on three incompressible Navier–Stokes simula-
tions, showing that(p+ 1)th-order accuracy is attained for Kovasznay flow and good
agreement is achieved between modal and nodal triangles for well-resolved simulations
of thin shear layers. Third, close agreement is reached between nodal triangles, modal
triangles, modal hybrid elements, and nodal quadrilateral elements for flow past a cylinder.

In future work we intend to investigate the use of the rotational symmetries, as suggested
in [16], in the nodal sets to improve the efficiency of the inner product and derivative
operators at higher polynomial orders. We also intend to investigate the use of overlapping
preconditioners to accelerate the elliptic solves.
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